74 research outputs found

    Characteristics of patients initiated on edoxaban in Europe: baseline data from edoxaban treatment in routine clinical practice for patients with atrial fibrillation (AF) in Europe (ETNA-AF-Europe)

    Get PDF
    Background Non-vitamin K antagonist (VKA) oral anticoagulants (NOACs) have substantially improved anticoagulation therapy for prevention of stroke and systemic embolism in patients with atrial fibrillation (AF). The available routine care data have demonstrated the safety of different NOACs; however, such data for edoxaban are scarce. Here, we report baseline characteristics of 13,638 edoxaban-treated patients with AF enrolled between November 2016 and February 2018. Methods ETNA-AF-Europe is a multinational, multi-centre, post-authorisation, observational study conducted in 825 sites in 10 European countries. Patients will be followed up for four years. Results Overall, 13,980 patients were enrolled of which 342 patients were excluded from the analysis. Mean patient age was 73.6 years with an average creatinine clearance of 69.4 mL/min. 56.6% were male. The calculated CHA2DS2-VASc and HAS-BLED mean scores were 3.1 and 2.6, respectively. Overall, 3.3, 14.6 and 82.0% of patients had low (CHA2DS2-VASc = 0), intermediate (CHA2DS2-VASc = 1) and high (CHA2DS2-VASc≥2) risks of stroke, respectively. High-risk patients (those with prior stroke, prior major bleeding, prior intracranial bleed or CHA2DS2-VASc ≥4) comprised 38.4% of the overall population. For 75.1% of patients edoxaban was their first anticoagulant prescription, whilst 16.9% switched from a VKA and 8.0% from another NOAC. A total of 23.4% of patients in ETNA-AF-Europe received the reduced dose of edoxaban 30 mg. Overall, 83.8% of patients received an edoxaban dose in line with the criteria outlined in the label. Conclusion Edoxaban was predominantly initiated in older, often anticoagulation-naïve, unselected European patients with AF, with a good overall adherence to the approved label. Trial registration NCT02944019; Date of registration: October 24, 2016

    Pharmacodynamic effect of bempedoic acid and statin combinations: predictions from a dose–response model

    Get PDF
    Aims Many patients are unable to achieve guideline-recommended LDL cholesterol (LDL-C) targets, despite taking maximally tolerated lipid-lowering therapy. Bempedoic acid, a competitive inhibitor of ATP citrate lyase, significantly lowers LDL-C with or without background statin therapy in diverse populations. Because pharmacodynamic interaction between statins and bempedoic acid is complex, a dose-response model was developed to predict LDL-C pharmacodynamics following administration of statins combined with bempedoic acid. Methods And Results Bempedoic acid and statin dosing and LDL-C data were pooled from 14 phase 1-3 clinical studies. Dose-response models were developed for bempedoic acid monotherapy and bempedoic acid-statin combinations using previously published statin parameters. Simulations were performed using these models to predict change in LDL-C levels following treatment with bempedoic acid combined with clinically relevant doses of atorvastatin, rosuvastatin, simvastatin, and pravastatin. Dose-response models predicted that combining bempedoic acid with the lowest statin dose of commonly used statins would achieve a similar degree of LDL-C lowering as quadrupling that statin dose" for example, the predicted LDL-C lowering was 54% with atorvastatin 80 mg compared with 54% with atorvastatin 20 mg + bempedoic acid 180 mg, and 42% with simvastatin 40 mg compared with 46% with simvastatin 10 mg + bempedoic acid 180 mg. Conclusion These findings suggest bempedoic acid combined with lower statin doses offers similar LDL-C lowering compared with statin monotherapy at higher doses, potentially sparing patients requiring additional lipid-lowering therapies from the adverse events associated with higher statin doses

    1,25(OH)2D3 Alters Growth Plate Maturation and Bone Architecture in Young Rats with Normal Renal Function

    Get PDF
    Whereas detrimental effects of vitamin D deficiency are known over century, the effects of vitamin D receptor activation by 1,25(OH)2D3, the principal hormonal form of vitamin D, on the growing bone and its growth plate are less clear. Currently, 1,25(OH)2D3 is used in pediatric patients with chronic kidney disease and mineral and bone disorder (CKD-MBD) and is strongly associated with growth retardation. Here, we investigate the effect of 1,25(OH)2D3 treatment on bone development in normal young rats, unrelated to renal insufficiency. Young rats received daily i.p. injections of 1 µg/kg 1,25(OH)2D3 for one week, or intermittent 3 µg/kg 1,25(OH)2D3 for one month. Histological analysis revealed narrower tibial growth plates, predominantly in the hypertrophic zone of 1,25(OH)2D3-treated animals in both experimental protocols. This phenotype was supported by narrower distribution of aggrecan, collagens II and X mRNA, shown by in situ hybridization. Concomitant with altered chondrocyte maturation, 1,25(OH)2D3 increased chondrocyte proliferation and apoptosis in terminal hypertrophic cells. In vitro treatment of the chondrocytic cell line ATDC5 with 1,25(OH)2D3 lowered differentiation and increased proliferation dose and time-dependently. Micro-CT analysis of femurs from 1-week 1,25(OH)2D3-treated group revealed reduced cortical thickness, elevated cortical porosity, and higher trabecular number and thickness. 1-month administration resulted in a similar cortical phenotype but without effect on trabecular bone. Evaluation of fluorochrome binding with confocal microscopy revealed inhibiting effects of 1,25(OH)2D3 on intracortical bone formation. This study shows negative effects of 1,25(OH)2D3 on growth plate and bone which may contribute to the exacerbation of MBD in the CKD pediatric patients

    How Linear Tension Converts to Curvature: Geometric Control of Bone Tissue Growth

    Get PDF
    This study investigated how substrate geometry influences in-vitro tissue formation at length scales much larger than a single cell. Two-millimetre thick hydroxyapatite plates containing circular pores and semi-circular channels of 0.5 mm radius, mimicking osteons and hemi-osteons respectively, were incubated with MC3T3-E1 cells for 4 weeks. The amount and shape of the tissue formed in the pores, as measured using phase contrast microscopy, depended on the substrate geometry. It was further demonstrated, using a simple geometric model, that the observed curvature-controlled growth can be derived from the assembly of tensile elements on a curved substrate. These tensile elements are cells anchored on distant points of the curved surface, thus creating an actin “chord” by generating tension between the adhesion sites. Such a chord model was used to link the shape of the substrate to cell organisation and tissue patterning. In a pore with a circular cross-section, tissue growth increases the average curvature of the surface, whereas a semi-circular channel tends to be flattened out. Thereby, a single mechanism could describe new tissue growth in both cortical and trabecular bone after resorption due to remodelling. These similarities between in-vitro and in-vivo patterns suggest geometry as an important signal for bone remodelling

    Microscopic structure of the polymer-induced liquid precursor for calcium carbonate

    Get PDF
    Many biomineral crystals form complex non-equilibrium shapes, often via transient amorphous precursors. Also in vitro crystals can be grown with non-equilibrium morphologies, such as thin films or nanorods. In many cases this involves charged polymeric additives that form a polymer-induced liquid precursor (PILP). Here, we investigate the CaCO3 based PILP process with a variety of techniques including cryoTEM and NMR. The initial products are 30–50 nm amorphous calcium carbonate (ACC) nanoparticles with ~2 nm nanoparticulate texture. We show the polymers strongly interact with ACC in the early stages, and become excluded during crystallization, with no liquid–liquid phase separation detected during the process. Our results suggest that “PILP” is actually a polymer-driven assembly of ACC clusters, and that its liquid-like behavior at the macroscopic level is due to the small size and surface properties of the assemblies. We propose that a similar biopolymer-stabilized nanogranular phase may be active in biomineralization
    • …
    corecore